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(Chapter) Preface

(subsection) What is mathematics?

Mathematics is the exercise of reason. (And the study of reason itself.)

To do mathematics is to exercise our reason.
To exercise our reason is to do mathematics.

Mathematics explores the math realm, and discovers proofs.

(subsection) The cornerstone of mathematics

Truth is the cornerstone of mathematics. Without truth, there is no mathematics.
Truth is the cornerstone of the Heavens and the Earth. The Lord God Jesus Christ of Nazareth is The Truth.

I like to think the “goal” of mathematics is to find logical truths. (There are higher truths that can’t be accessed with rational thought.)
How do we go from one logical truth to the next? Via proof.

Proof is the lifeblood of mathematics, connecting truth to truth.

Come to think of it, maybe the “goal” of math is not to find logical truths, but to find proofs... since logical truth is often inaccessible to
math (in part due to incompleteness, nonconstructibility, uncertainty, undecidability, incomputability, ...).

Not all that is true can be proven, (incompleteness)
not all that exists can be shown. (nonconstructibility)

(subsection) Two kinds of proof

There are two kinds of proofs: formal proofs and “social” proofs.

A formal proof is a mechanical tree of (logical) sentences.
The nodes of the tree (ie. the sentences) are connected by deduction.
The root of the tree is the sentence that we’re proving.
Formal proofs are rigorous.

A “social” proof is a flabby argument for why a (logical) sentence may be true.
“Social” proofs give us a rough idea of why a sentence may be true.
“Social” proofs rarely give us a good idea in practice, since most of them skip lots of steps (or worse: they leave them as “exercise”).
“Social” proofs are what we find in most textbooks (like this one).
“Social” proofs are not rigorous, by their vagueness and incompleteness.

Formal proofs are the machine code of mathematics.
“Social” proofs are the natural language of mathematics.

(subsection) Skipping steps is bad mathematics

There’s exactly one trivial thing in math: skipping steps.

It’s easy to “prove” something when we skip steps. For example,

THEOREM. The Riemann hypothesis.
proof. Exercise.

A proof that skips steps is no proof at all. Just as the mathematics community shouldn’t accept proofs with holes, a math student should
never accept a proof with holes.

Yet, my experience is that proofs in textbooks are often full of holes:
stuff that is assumed,
stuff that is ambiguous,
stuff that is unclear,
stuff that is left to the reader,
stuff that is left as “exercise”,
stuff that is left to context,
stuff that depends on stuff that hasn’t been proved,
stuff that depends on itself (circularity),
stuff that is simply ignored.

All this makes for bad explanations. Good mathematics is pristine, precise. Bad explanations are bad mathematics.

It takes intelligence to communicate clearly. It’s trivial to speak gobbledygook that others don’t understand.

The burden of explanation is on the teacher/writer, not on the student/reader!
A good doctor doesn’t tell patients to “treat themselves”. A student’s job is not to “convince himself”.
It’s the responsibility of the teacher/writer to make himself understood. If he’s not understood, then he has failed. Badly.

(subsection) Proofs: the good, the bad, and the awesome
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A good proof is a proof where every step is “easy” to follow, and no step is skipped.

A bad proof is a proof where some steps are hard to follow, or some steps are skipped.

The hallmark of a good proof is that the reader doesn’t need to do any work to follow the proof.
In particular, the reader doesn’t need to stop and think about some step, and he doesn’t need pen and paper to follow the proof
(the writer has supplied all steps/calculations).

The hallmark of a bad proof is that the reader needs to do some work to follow the proof.
In particular, the reader needs to stop and think about some step, or he needs pen and paper to follow the proof (the writer has
skipped some steps/calculations).

An awesome proof is a good proof that’s also at the right level of abstraction.
If the proof is too low-level, it’ll be hard to aggregate the details into the high-level ideas of the proof.
If the proof is too abstract, it’ll be hard to specialize the generalities into the details of the proof.

Reading and understanding awesome proofs is hard.
Reading and understanding good proofs is very hard.
Reading and understanding bad proofs... is near-impossible.

(subsection) The proofs in this book

The proofs in this book are not good, let alone awesome. But I’m not actively trying to make them bad.
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(Chapter) Classical logic
Mathematics is the discovery of proofs.
Mathematics is the exercise of reason.
Reason is the exercise of logic (maybe?).

AXIOM. Creating new propositions from old propositions via logical connectives.
0) For all propositions P,Q〈not P is a proposition〉.
1) For all propositions P,Q〈P and Q is a proposition〉.
2) For all propositions P,Q〈P or Q is a proposition〉.
3) For all propositions P,Q〈P then Q is a proposition〉.
4) For all propositions P,Q〈P iff Q is a proposition〉.

AXIOM. The law of the excluded middle. For every proposition P 〈the proposition P∨¬P is true〉.
AXIOM. The law of noncontradiction. For every proposition P 〈the proposition P∧¬P is false〉.
AXIOM. The law of the excluded middle. ∀P 〈P∨¬P 〉.
AXIOM. The law of noncontradiction. ∀P 〈¬(P∧¬P )〉.

THEOREM. The law of the excluded middle and the law of noncontradiction are equivalent.
proof.
C0) Show: the law of the excluded middle is equivalent to the law of noncontradiction.
|
| Since: by definition, the law of the excluded middle is equivalent to ∀P 〈P∨¬P 〉,
| since: by definition, the law of noncontradiction is equivalent to ∀P 〈¬(P∧¬P )〉,
| then: by equivalence,
| showing that the law of the excluded middle is equivalent to the law of noncontradiction
| is equivalent to
| showing that ∀P 〈P∨¬P 〉 iff ∀P 〈¬(P∧¬P )〉.
|
| C1) Show: ∀P 〈P∨¬P 〉 iff ∀P 〈¬(P∧¬P )〉.
| |
| | By ∀-hoisting, 〈∀P 〈P∨¬P 〉 iff ∀P 〈¬(P∧¬P )〉〉 is equivalent to 〈∀P 〈P∨¬P iff ¬(P∧¬P )〉〉. (C8)
| |
| | Since: by C8), 〈∀P 〈P∨¬P 〉 iff ∀P 〈¬(P∧¬P )〉〉 is equivalent to 〈∀P 〈P∨¬P iff ¬(P∧¬P )〉〉,
| | then: by equivalence, showing 〈∀P 〈P∨¬P 〉 iff ∀P 〈¬(P∧¬P )〉〉 is equivalent to showing 〈∀P 〈P∨¬P iff ¬(P∧¬P )〉〉.
| |
| | C2) Show: 〈∀P 〈P∨¬P iff ¬(P∧¬P )〉〉.
| | |
| | | H0) Let: P is a proposition.
| | | C3) Show: P∨¬P iff ¬(P∧¬P ).
| | | |
| | | | By the duality of conjuction and disjuction, ¬(P∧¬P ) iff ¬P∨¬¬P . (C4)
| | | | By not-not-elimination, ¬P∨¬¬P iff ¬P∨P . (C5)
| | | | By the commutativity of disjunction, ¬P∨P iff P∨¬P . (C6)
| | | |
| | | | Since: by (C4), ¬(P∧¬P ) iff ¬P∨¬¬P ,
| | | | since: by (C5), ¬P∨¬¬P iff ¬P∨P ,
| | | | since: by (C6), ¬P∨P iff P∨¬P ,
| | | | then: by the transitivity of equivalence, ¬(P∧¬P ) iff P∨¬P . (C7)
| | | |
| | | | Since: by (C7), ¬(P∧¬P ) iff P∨¬P ,
| | | | then: by the commutativity of equivalence, P∨¬P iff ¬(P∧¬P ). (C3)
| | | |
| | | Shown C3): P∨¬P iff ¬(P∧¬P ).
| | |
| | Shown C2): 〈∀P 〈P∨¬P iff ¬(P∧¬P )〉〉.
| |
| Shown C1): ∀P 〈P∨¬P 〉 iff ∀P 〈¬(P∧¬P )〉.
|
Shown C0): the law of the excluded middle is equivalent to the law of noncontradiction.

DEFINITION. The fundamental abstraction of ∃-syntax. The fundamental abstraction of ∀-syntax.
Let x be a variable.
Let φ[x] be an open sentence in x (ie. x is a free variable in φ[x]).
Let X be a set.

0) ∃x∈X〈 φ[x] 〉 is defined as ∃x〈 x∈X and φ[x] 〉.
1) ∀x∈X〈 φ[x] 〉 is defined as ∀x〈 if x∈X, then φ[x] 〉.
0’) ∃x∈X〈 φ[x] 〉 is defined as ∃x〈 x∈X ∧ φ[x] 〉.
1’) ∀x∈X〈 φ[x] 〉 is defined as ∀x〈 x∈X =⇒ φ[x] 〉.
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DEFINITION. ∃-elimination, aka existential elimination, aka existential instantiation.
TODO

DEFINITION. ∀-elimination, aka universal elimination, aka universal instantiation.
TODO

The following theorem shows how it’s possible to prove an arbitrary statement (is true) assuming an arbitrary false statement (is true).
We’ll prove that all math is false.

THEOREM. All math is false (assuming every lemon is yellow and not every every lemon is yellow).
Let 〈every lemon is yellow〉 be a proposition.
Let 〈all math is false〉 be a proposition.

0) if 〈〈every lemon is yellow〉 and not〈every lemon is yellow〉〉,
then 〈all math is false〉.

proof.
H0) Let: 〈every lemon is yellow 〉 is a proposition.
H1) Let: 〈all math is false〉 is a proposition.
C0) Show: if 〈〈every lemon is yellow〉 and not〈every lemon is yellow〉〉, then 〈all math is false〉.
|
| H2) Let: 〈every lemon is yellow〉.
| H3) Let: not〈every lemon is yellow〉.
| C1) Show: 〈all math is false〉.
| |
| | Since: by H1), 〈all math is false〉 is a proposition,
| | since: by H2), 〈every lemon is yellow〉,
| | then: by or-introduction, 〈all math is false〉 or 〈every lemon is yellow〉. (C2)
| |
| | Since: by H1), 〈all math is false〉 is a proposition,
| | since: by H3), not〈every lemon is yellow〉,
| | then: by or-introduction, 〈all math is false〉 or not〈every lemon is yellow〉. (C3)
| |
| | Since: by C2), 〈all math is false〉 or 〈every lemon is yellow〉,
| | since: by C3), 〈all math is false〉 or not〈every lemon is yellow〉,
| | then: by ???, 〈all math is false〉. (C1)
| |
| Shown: C1) 〈all math is false〉.
|
Shown: C0) if 〈〈every lemon is yellow〉 and not〈every lemon is yellow〉〉, then 〈all math is false〉.

proof.
H0) Let: 〈every lemon is yellow〉 is a proposition.
H1) Let: 〈all math is false〉 is a proposition.
C0) Show: if 〈〈every lemon is yellow〉 and not〈every lemon is yellow〉〉, then 〈all math is false〉.
|
| H2) Let: 〈every lemon is yellow〉 is true.
| H3) Let: not〈every lemon is yellow〉 is true.
| C1) Show: 〈all math is false〉 is true.
| |
| | Since: by H2), 〈every lemon is yellow〉 is true,
| | since: by H1), 〈all math is false〉 is a proposition,
| | then: by or-introduction, 〈every lemon is yellow or all math is false〉 is true. (C1)
| |
| | Since: by H3), not〈every lemon is yellow〉 is true,
| | then: by negation, 〈not not every lemon is yellow〉 is false. (C2)
| | Since: by (C2), 〈not not every lemon is yellow〉 is false,
| | then: by not-not-elimination, 〈every lemon is yellow〉 is false. (C3)
| |
| | Since: by C1), 〈every lemon is yellow or all math is false〉 is true,
| | since: by C3), 〈every lemon is yellow〉 is false,
| | then: by or-elimination, 〈all math is false〉 is true. (C1)
| |
| Shown: C1) 〈all math is false〉 is true.
|
Shown: C0) if 〈〈every lemon is yellow〉 and not〈every lemon is yellow〉〉, then 〈all math is false〉.

proof.
H0) Let: 〈every lemon is yellow〉 is a proposition.
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H1) Let: 〈all math is false〉 is a proposition.
C0) Show: if 〈〈every lemon is yellow〉 and not〈every lemon is yellow〉〉, then 〈all math is false〉.
|
| Since: by H0), 〈every lemon is yellow〉 is a proposition,
| then: by the law of noncontradiction, not 〈 〈every lemon is yellow〉 and not〈every lemon is yellow〉 〉. (C1)
|
| Since: by C1), not 〈 〈every lemon is yellow〉 and not〈every lemon is yellow〉 〉,
| then: by the law of false antecedent, if 〈〈every lemon is yellow〉 and not〈every lemon is yellow〉〉, then 〈all math is false〉.
|
Shown: C0) if 〈〈every lemon is yellow〉 and not〈every lemon is yellow〉〉, then 〈all math is false〉.

The following is the general version of the previous result. In my opinion, it’s easier to read. (So symbols, properly used, can help understanding).

THEOREM. The principle of explosion.
Let P be a proposition.
Let Q be a proposition.

0) if P is true and ¬P is true, then Q is true.

proof.
Let P be a proposition.
Let Q be a proposition.
Let P be true.
Let ¬P be true.
Show Q is true.
|
| Since P and Q are propositions,
| and P is true,
| then, by or-introduction, P or Q is true.
|
| Since ¬P is true,
| then, by negation, ¬¬P is false,
| Since ¬¬P is false,
| then, by ¬¬-elimination, P is false.
|
| Since P is false,
| and P or Q is true,
| then, by or-elimination, Q is true.
|
Showed Q is true.

The following is the previous theorem/proof, without explicitly saying is true.

THEOREM. The principle of explosion.
Let P be a proposition.
Let Q be a proposition.

0) if P and ¬P , then Q.

proof.
Let P be a proposition.
Let Q be a proposition.
Let P .
Let ¬P .
Show Q.
|
| Since P and Q are propositions,
| and P ,
| then, by or-introduction, P or Q.
|
| Since ¬P ,
| then, by negation, ¬¬P is false,
| Since ¬¬P is false,
| then, by ¬¬-elimination, P is false.
|
| Since P is false,
| and P or Q,
| then, by or-elimination, Q.
|
Showed Q.
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(Chapter) Sets and functions, a language for mathematics

(Section) Sets

TODO

(Section) Functions

DEFINITION. Images and preimages of functions.
Let X,Y be sets.
Let f : X−→Y be a function.
Let A⊆X be a subset of X.
Let B⊆Y be a subset of Y .

0) The image of A⊆X, denoted f∗[A], is the set {y∈Y | ∃ay∈A〈 f : ay 7−→y 〉}. (Images can’t be large.)
1) The preimage of B⊆Y , denoted f∗[B], is the set {x∈X | ∃bx∈B〈 f : x 7−→bx 〉}. (Preimages can’t be small.)

THEOREM. The fundamental lemma of functions.
Let X,Y be sets.
Let f : X−→Y be a function.

0) For every A⊆X and x∈X〈 if x∈A, then f [x]∈f∗[A] 〉.
1) For every A⊆X and x∈X〈 if f [x]∈f∗[A], maybe not then x∈A 〉.
2) For every B⊆Y and x∈X〈 if x∈f∗[B], then f [x]∈B 〉.
3) For every B⊆Y and x∈X〈 if f [x]∈B, then x∈f∗[B] 〉.
4) For every A0, A1⊆X〈 if A0⊆A1, then f∗[A0]⊆f∗[A1] 〉. (Images preserve subsets.)
5) For every B0, B1⊆Y 〈 if B0⊆B1, then f∗[B0]⊆f∗[B1] 〉. (Preimages preserve subsets.)
6) For every A⊆X and B⊆Y 〈 A⊆f∗[B] iff f∗[A]⊆B 〉. (Duality of images and preimages.)

proof of 0).
Let X,Y be sets.
Let f : X−→Y be a function.
Let A⊆Y be a subset of X.
We show that for every x∈X〈 if x∈A, then f [x]∈f∗[A] 〉.
|
| Let x∈X be an element of X.
| Let x∈A be an element of A.
| We show that f [x]∈f∗[A].
| |
| | By the image definition, f∗[A] is the set {y∈Y | ∃ay∈A〈 f : ay 7−→y 〉}.
| | Since We show that f [x]∈f∗[A],
| | then, by the image definition, We show that there exists ay∈A so that f : ay 7−→f [x].
| | We show that there exists ay∈A so that f : ay 7−→f [x].
| | |
| | | Since x∈A, and f : x 7−→f [x], then there exists ay∈A so that f : ay 7−→f [x].
| | |
| | This shows that there exists ay∈A so that f : ay 7−→f [x].
| |
| This shows that f [x]∈f∗[A].
|
This shows that for every x∈X〈 if x∈A, then f [x]∈f∗[A] 〉.

proof of 1).
TODO

proof of 2).
Let X,Y be sets.
Let f : X−→Y be a function.
Let B⊆Y be a subset of Y .
We show that for every x∈X〈 if x∈f∗[B], then f [x]∈B 〉.
|
| Let x∈X be an element of X.
| Let x∈f∗[B] be an element of the preimage f∗[B].
| We show that f [x]∈B.
| |
| | By the preimage definition, f∗[B] is the set {x∈X | ∃bx∈B〈 f : x 7−→bx 〉}.
| | Since f : X−→Y is a function,
| | then, by the function definition, for every x∈X and y0, y1∈Y 〈 if f : x 7−→y0 and f : x7−→y1, then y0=y1 〉.
| | Since x∈f∗[B], then, by the preimage definition, there exists bx∈B so that f : x 7−→bx.
| | Since x∈X, then, by the function definition, there exists f [x]∈Y so that f : x7−→f [x].
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| | Since x∈X, bx, f [x]∈Y ,
| | and f : x 7−→bx,
| | and f : x 7−→f [x],
| | and for every x∈X and y0, y1∈Y 〈 if f : x7−→y0 and f : x 7−→y1, then y0=y1 〉,
| | then, by setting x←x and y0←bx and y1←f [x], bx is equal f [x].
| | Since bx=f [x], and bx∈B, then, by replacement, f [x]∈B.
| |
| This shows that f [x]∈B. |
This shows that for every x∈X〈 if x∈f∗[B], then f [x]∈B 〉.

proof of 3).
Let X,Y be sets.
Let f : X−→Y be a function.
Let B⊆Y be a subset of Y .
We show that for for every x∈X〈 if f [x]∈B, then x∈f∗[B] 〉.
|
| Let x∈X be an element of X.
| Let f [x]∈B be an element of B.
| We show that x∈f∗[B].
| |
| | By the preimage definition, f∗[B] is the set {x∈X | ∃bx∈B〈 f : x 7−→bx 〉}.
| | Since We show that x∈f∗[B],
| | then, by the preimage definition, We show that there exists bx∈B so that f : x 7−→bx.
| | We show that there exists bx∈B so that f : x 7−→bx.
| | |
| | | Since f [x]∈B, and f : x 7−→f [x], then there exists bx∈B so that f : x 7−→bx.
| | |
| | This shows that there exists bx∈B so that f : x 7−→bx.
| |
| This shows that x∈f∗[B].
|
This shows that for for every x∈X〈 if f [x]∈B, then x∈f∗[B] 〉.

proof of 4).
TODO

proof of 5).
TODO

proof of 6).
TODO

THEOREM. The fundamental theorem of functions.
Let X,Y be sets.
Let f : X−→Y be a function.

0) For every A⊆X〈 f∗[f∗[A]]⊇A 〉. (Preimages of images can’t be small.)
1) For every B⊆Y 〈 f∗[f∗[B]]⊆B 〉. (Images of preimages can’t be large.)
2) f is injective iff for every A⊆X〈 f∗[f∗[A]]⊆A 〉. (Preimages of injections are as small as possible.)
3) f is surjective iff for every B⊆Y 〈 f∗[f∗[B]]⊇B 〉. (Images of surjections are as large as possible.)

proof of 0).
Let X,Y be sets.
Let f : X−→Y be a function.
Let A⊆X be a subset of X.
We show that f∗[f∗[A]]⊇A.
|
| By the superset definition, f∗[f∗[A]]⊇A is equivalent to 〈 for every x∈A〈 x∈f∗[f∗[A]] 〉 〉.
| Since We show that f∗[f∗[A]]⊇A,
| and f∗[f∗[A]]⊇A is equivalent to 〈 for every x∈A〈 x∈f∗[f∗[A]] 〉 〉,
| then, by replacement, We show that for every x∈A〈 x∈f∗[f∗[A]] 〉.
| We show that for every x∈A〈 x∈f∗[f∗[A]] 〉.
| |
| | Let x∈A be an element of A.
| | We show that x∈f∗[f∗[A]].
| | |
| | | By the preimage definition, f∗[f∗[A]] is the set {x∈X | ∃bx∈f∗[A]〈 f : x 7−→bx 〉}.
| | | Since We show that x∈f∗[f∗[A]],
| | | then, by the preimage definition, We show that there exists bx∈f∗[A] so that f : x7−→bx.
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| | | We show that there exists bx∈f∗[A] so that f : x 7−→bx.
| | | |
| | | | By the fundamental abstraction of ∃-syntax,
| | | | the sentence 〈 there exists bx∈f∗[A] so that f : x 7−→bx 〉 is equivalent to the sentence ∃bx〈 bx∈f∗[A] and f : x 7−→bx 〉.
| | | | Since We show that 〈 there exists bx∈f∗[A] so that f : x7−→bx 〉,
| | | | and the sentence 〈 there exists bx∈f∗[A] so that f : x 7−→bx 〉 is equivalent to the sentence ∃bx〈 bx∈f∗[A] and f : x 7−→bx 〉,
| | | | then, by replacement, We show that ∃bx〈 bx∈f∗[A] and f : x 7−→bx 〉.
| | | | We show that ∃bx〈 bx∈f∗[A] and f : x 7−→bx 〉.
| | | | |
| | | | | By the image definition, f∗[A] is the set {y∈Y | ∃ay∈A〈 f : ay 7−→y 〉}.
| | | | | Since must show that ∃bx〈 bx∈f∗[A] and f : x 7−→bx 〉,
| | | | | then, by the image definition, We show that ∃bx〈 ∃ay∈A〈f : ay 7−→bx〉 and f : x 7−→bx 〉.
| | | | | We show that ∃bx〈 ∃ay∈A〈f : ay 7−→bx〉 and f : x 7−→bx 〉.
| | | | | |
| | | | | | By the fundamental abstraction of ∃-syntax,
| | | | | | the sentence ∃ay∈A〈f : ay 7−→bx〉 is equivalent to the sentence ∃ay〈ay∈A and f : ay 7−→bx〉.
| | | | | | Since We show that ∃bx〈 ∃ay∈A〈f : ay 7−→bx〉 and f : x 7−→bx 〉,
| | | | | | and the sentence ∃ay∈A〈f : ay 7−→bx〉 is equivalent to the sentence ∃ay〈ay∈A and f : ay 7−→bx〉,
| | | | | | then, by replacement, We show that ∃bx〈 ∃ay〈ay∈A and f : ay 7−→bx〉 and f : x7−→bx 〉.
| | | | | | We show that ∃bx〈 ∃ay〈ay∈A and f : ay 7−→bx〉 and f : x7−→bx 〉.
| | | | | | |
| | | | | | | Since x∈A, and f : x 7−→f [x],
| | | | | | | then, by setting ay←x and bx←f [x], we get that ∃bx〈 ∃ay〈ay∈A and f : ay 7−→bx〉 and f : x 7−→bx 〉.
| | | | | | |
| | | | | | This shows that ∃bx〈 ∃ay〈ay∈A and f : ay 7−→bx〉 and f : x 7−→bx 〉.
| | | | | |
| | | | | This shows that ∃bx〈 ∃ay∈A〈f : ay 7−→bx〉 and f : x 7−→bx 〉.
| | | | |
| | | | This shows that ∃bx〈 bx∈f∗[A] and f : x 7−→bx 〉.
| | | |
| | | This shows that there exists bx∈f∗[A] so that f : x 7−→bx.
| | |
| | This shows that x∈f∗[f∗[A]].
| |
| This shows that for every x∈A〈 x∈f∗[f∗[A]] 〉.
|
This shows that f∗[f∗[A]]⊇A.

proof of 1).
TODO

proof of 2), only if.
Let X,Y be sets.
Let f : X−→Y be a function.
Let f : X−→Y be injective.
We show that for every A⊆X〈 f∗[f∗[A]]⊆A 〉.
|
| Let A⊆X be a subset of X.
| We show that f∗[f∗[A]]⊆A.
| |
| | By the subset definition, f∗[f∗[A]]⊆A is equivalent to 〈 for every x∈f∗[f∗[A]]〈 x∈A 〉 〉.
| | Since We show that f∗[f∗[A]]⊆A,
| | and f∗[f∗[A]]⊆A is equivalent to 〈 for every x∈f∗[f∗[A]]〈 x∈A 〉 〉,
| | then, by replacement, We show that for every x∈f∗[f∗[A]]〈 x∈A 〉.
| | We show that for every x∈f∗[f∗[A]]〈 x∈A 〉.
| | |
| | | Let x∈A be an element of f∗[f∗[A]].
| | | We show that x∈A.
| | | |
| | | | By the preimage definition, f∗[f∗[A]] is the set {x∈X | ∃bx∈f∗[A]〈 f : x 7−→bx 〉}.
| | | | By the image definition, f∗[A] is the set {y∈Y | ∃ay∈A〈 f : ay 7−→y 〉}.
| | | | Since f : X−→Y is an injection,
| | | | then, by the injection definition, for every x0, x1∈X and y∈Y 〈 if f : x0 7−→y and f : x1 7−→y, then x0=x1 〉.
| | | | Since x is in f∗[f∗[A]], then, by the preimage definition, there exists bx∈f∗[A] so that f : x 7−→bx.
| | | | Since bx is in f∗[A], then, by the image definition, there exists ay∈A so that f : ay 7−→bx.
| | | | Since x, ay∈X, and bx∈Y
| | | | and f : x 7−→bx,
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| | | | and f : ay 7−→bx,
| | | | and for every x0, x1∈X and y∈Y 〈 if f : x0 7−→y and f : x1 7−→y, then x0=x1 〉,
| | | | then, by setting x0←x and x1←ay and y←bx, x is equal to ay.
| | | | Since x=ay, and ay∈A then, by replacement, x∈A.
| | | |
| | | This shows that x∈A.
| | |
| | This shows that for every x∈f∗[f∗[A]]〈 x∈A 〉.
| |
| This shows that f∗[f∗[A]]⊆A.
|
This shows that for every A⊆X〈 f∗[f∗[A]]⊆A 〉.

proof of 2), if.
Let X,Y be sets.
Let f : X−→Y be a function.
Let f : X−→Y satisfy 〈 for every A⊆X〈 f∗[f∗[A]]⊆A 〉 〉.
We show that f : X−→Y is injective.
|
| Since We show that f is injective,
| then, by the injective definition, We show that for every x0, x1∈X and y∈Y 〈 if f : x0 7−→y and f : x1 7−→y, then x0=x1 〉.
| We show that for every x0, x1∈X and y∈Y 〈 if f : x0 7−→y and f : x1 7−→y, then x0=x1 〉.
| |
| | Let x0, x1∈X.
| | Let y∈Y .
| | We show that if f : x0 7−→y and f : x1 7−→y, then x0=x1.
| | |
| | | Let f : x0 7−→y and f : x1 7−→y.
| | | We show that x0=x1.
| | | |
| | | | TODO
| | | |
| | | This shows that x0=x1.
| | |
| | This shows that if f : x0 7−→y and f : x1 7−→y, then x0=x1.
| |
| This shows that for every x0, x1∈X and y∈Y 〈 if f : x0 7−→y and f : x1 7−→y, then x0=x1 〉.

This shows that f : X−→Y is injective.

proof of 3), only if.
TODO

proof of 3), if.
TODO

THEOREM. The fundamental meta-theorem of equations.
Let A be a “math expression”.
Let B be a “math expression”.
Let f be a function from “math expressions” to “math expressions” (ie. the image under f of each “math expression” is unique).

0) If A equals B, then f [A] equals f [B].
proof. I don’t know.
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(Chapter) Convergence, pillar of analysis

Limits are the workhorse of analysis. In analysis, “everything is a limit“. Or something.

Derivatives are limits. Integrals are limits. Continuity is defined using limits. Even equality can be defined using limits (kinda).

But we’ll prefer a different language: that of convergence. Limits and convergence are the same idea.
You can say that analysis is built on limits.
You can say that analysis is built on convergence.

DEFINITION. Limits and convergence of sequences.
Let f : N−→R be a sequence.
Let L∈R be a real number in the codomain of f .

0) f has limit L (at infinity), denoted f−→L, iff
for every precision ϵ∈R+

there exists a threshold Nϵ∈N so that
for every x∈N in the domain 〈
if x is in the ∞-ball (Nϵ..∞)N, then f [x] is in the ϵ-ball (L−ϵ..L+ϵ)R
〉.

1) f converges to L (at infinity), denoted f−→L, iff
for every precision ϵ∈R+

there exists a threshold Nϵ∈N so that
for every x∈N in the domain 〈
if x is in the ∞-ball (Nϵ..∞)N, then f [x] is in the ϵ-ball (L−ϵ..L+ϵ)R
〉.

2) f has limit L (at infinity) iff f converges to L (at infinity).

DEFINITION. Limits and convergence of functions.
Let f : A⊆R−→R be function.
Let a∈A be a real number in the domain of f .
Let L∈R be a real number in the codomain of f .

0) f has limit L at a, denoted f−→L@a, iff
for every precision ϵ∈R+

there exists a threshold δϵ∈R+ so that
for every x∈A in the domain 〈
if x is in the δ-ball (a−δϵ..a+δϵ)R, then f [x] is in the ϵ-ball (L−ϵ..L+ϵ)R
〉.

1) f converges to L at a, denoted f−→L@a, iff
for every precision ϵ∈R+

there exists a threshold δϵ∈R+ so that
for every x∈A in the domain 〈
if x is in the δ-ball (a−δϵ..a+δϵ)R, then f [x] is in the ϵ-ball (L−ϵ..L+ϵ)R
〉.

2) f has limit L at a iff f converges to L at a.

(Section) Open sets, a language for convergence

THEOREM. Convergence via open sets.
Let f : A⊆R−→R be function.
Let a∈A be a real number in the domain of f .
Let L∈R be a real number in the codomain of f .

0) f converges to L at a iff for every ϵ∈R+, there exists δϵ∈R+ so that, for every x∈A in the domain 〈
if x∈(a−δϵ..a+δϵ)R, then f [x]∈(L−ϵ..L+ϵ)R
〉.

1) f converges to L at a iff for every ϵ∈R+, there exists δϵ∈R+ so that, for every x∈A in the domain 〈
if x∈(a−δϵ..a+δϵ)R, then x∈f∗[(L−ϵ..L+ϵ)R]
〉.

2) f converges to L at a iff for every ϵ∈R+, there exists δϵ∈R+〈
(a−δϵ..a+δϵ)R ⊆ f∗[(L−ϵ..L+ϵ)R]
〉.

3) f converges to L at a iff for every ϵ∈R+, there exists δϵ∈R+〈
f∗[(a−δϵ..a+δϵ)R] ⊆ (L−ϵ..L+ϵ)R
〉.

4) f converges to L at a iff for every open ball B[L, ϵ] at L, there exists an open ball B[a, δϵ] at a〈
B[a, δϵ] ⊆ f∗[B[L, ϵ]]
〉.

5) f converges to L at a iff for every open ball B[L, ϵ] at L, there exists an open ball B[a, δϵ] at a〈
f∗[B[a, δϵ]] ⊆ B[L, ϵ]
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〉.
6) f converges to L at a iff for every open ball B[L, ϵ] at L〈

f∗[B[L, ϵ]] is open
〉.

proof of 0).
This is just the convergence definition, for reference =)

proof of 1), only if.
Let f : A⊆R−→R be function.
Let a∈A be a real number in the domain of f .
Let L∈R be a real number in the codomain of f .
Let f converge to L at a.
We show that for every ϵ∈R+, there exists δϵ∈R+ so that, for every x∈A〈 if x∈(a−δϵ..a+δϵ)R, then x∈f∗[(L−ϵ..L+ϵ)R] 〉.

By the fundamental lemma of functions, for every subset B⊆Cod[f ], for every x∈Dom[f ]〈 f [x]∈B iff x∈f∗[B] 〉.
Since (L−ϵ..L+ϵ)R is a subset of Cod[f ], and x is in Dom[f ],
then, by the fundamental lemma of functions and setting B←(L−ϵ..L+ϵ)R, we get that f [x]∈(L−ϵ..L+ϵ)R iff x∈f∗[(L−ϵ..L+ϵ)R].

Since f converges to L at a,
then, by the convergence definition,
for every ϵ∈R+, there exists δϵ∈R+ so that, for every x∈A〈 if x∈(a−δϵ..a+δϵ)N, then f [x]∈(L−ϵ..L+ϵ)R 〉.

Since f [x]∈(L−ϵ..L+ϵ)R iff x∈f∗[(L−ϵ..L+ϵ)R],
and for every ϵ∈R+, there exists δϵ∈R+ so that, for every x∈A〈 if x∈(a−δϵ..a+δϵ)N, then f [x]∈(L−ϵ..L+ϵ)R 〉,
then, by replacing f [x]∈(L−ϵ..L+ϵ)R with x∈f∗[(L−ϵ..L+ϵ)R],
for every ϵ∈R+, there exists δϵ∈R+ so that, for every x∈A〈 if x∈(a−δϵ..a+δϵ)R, then x∈f∗[(L−ϵ..L+ϵ)R] 〉.

This shows that for every ϵ∈R+, there exists δϵ∈R+ so that, for every x∈A〈 if x∈(a−δϵ..a+δϵ)R, then x∈f∗[(L−ϵ..L+ϵ)R] 〉.

proof of 1), if.
Let f : A⊆R−→R be function.
Let a∈A be a real number in the domain of f .
Let L∈R be a real number in the codomain of f .
Let 〈 for every ϵ∈R+, there exists δϵ∈R+ so that, for every x∈A〈 if x∈(a−δϵ..a+δϵ)R, then x∈f∗[(L−ϵ..L+ϵ)R] 〉 〉.
We show that f converges to L at a.

TODO

This shows that f converges to L at a.

proof of 1), direct.
Let f : A⊆R−→R be function.
Let a∈A be a real number in the domain of f .
Let L∈R be a real number in the codomain of f .
We show that 〈 f−→L@a 〉 iff 〈 ∀ϵ∈R+ ∃δϵ∈R+ ∀x∈A〈 x∈(a−δϵ..a+δϵ)R =⇒ x∈f∗[(L−ϵ..L+ϵ)R] 〉 〉.

By the convergence definition,
〈 f−→L@a 〉 is equivalent to 〈 ∀ϵ∈R+ ∃δϵ∈R+ ∀x∈A〈 x∈(a−δϵ..a+δϵ)R =⇒ f [x]∈(L−ϵ..L+ϵ)R 〉 〉.
Since 〈 f−→L@a 〉 is equivalent to 〈 ∀ϵ∈R+ ∃δϵ∈R+ ∀x∈A〈 x∈(a−δϵ..a+δϵ)R =⇒ f [x]∈(L−ϵ..L+ϵ)R 〉 〉,
and We show that 〈 f−→L@a 〉 iff 〈 ∀ϵ∈R+ ∃δϵ∈R+ ∀x∈A〈 x∈(a−δϵ..a+δϵ)R =⇒ x∈f∗[(L−ϵ..L+ϵ)R] 〉 〉,
then, by replacement, We show that
〈 ∀ϵ∈R+ ∃δϵ∈R+ ∀x∈A〈 x∈(a−δϵ..a+δϵ)R =⇒ f [x]∈(L−ϵ..L+ϵ)R 〉 〉
iff
〈 ∀ϵ∈R+ ∃δϵ∈R+ ∀x∈A〈 x∈(a−δϵ..a+δϵ)R =⇒ x∈f∗[(L−ϵ..L+ϵ)R] 〉 〉.
We show that
〈 ∀ϵ∈R+ ∃δϵ∈R+ ∀x∈A〈 x∈(a−δϵ..a+δϵ)R =⇒ f [x]∈(L−ϵ..L+ϵ)R 〉 〉
iff
〈 ∀ϵ∈R+ ∃δϵ∈R+ ∀x∈A〈 x∈(a−δϵ..a+δϵ)R =⇒ x∈f∗[(L−ϵ..L+ϵ)R] 〉 〉.

Since We show that
〈 ∀ϵ∈R+ ∃δϵ∈R+ ∀x∈A〈 x∈(a−δϵ..a+δϵ)R =⇒ f [x]∈(L−ϵ..L+ϵ)R 〉 〉
iff
〈 ∀ϵ∈R+ ∃δϵ∈R+ ∀x∈A〈 x∈(a−δϵ..a+δϵ)R =⇒ x∈f∗[(L−ϵ..L+ϵ)R] 〉 〉.
then, by the fundamental lemma of first-order classical logic, we can peel the outer quantifier layers that are equal, so
We show that
x∈(a−δϵ..a+δϵ)R =⇒ f [x]∈(L−ϵ..L+ϵ)R
iff
x∈(a−δϵ..a+δϵ)R =⇒ x∈f∗[(L−ϵ..L+ϵ)R].
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We show that
x∈(a−δϵ..a+δϵ)R =⇒ f [x]∈(L−ϵ..L+ϵ)R
iff
x∈(a−δϵ..a+δϵ)R =⇒ x∈f∗[(L−ϵ..L+ϵ)R].

Let x∈(a−δϵ..a+δϵ)R.
We show that
f [x]∈(L−ϵ..L+ϵ)R
iff
x∈f∗[(L−ϵ..L+ϵ)R].

By the fundamental lemma of functions, setting B to (L−ϵ..L+ϵ)R, we get that
f [x]∈B iff x∈f∗[B], meaning
f [x]∈(L−ϵ..L+ϵ)R iff x∈f∗[(L−ϵ..L+ϵ)R].

This shows that
f [x]∈(L−ϵ..L+ϵ)R
iff
x∈f∗[(L−ϵ..L+ϵ)R].

This shows that
x∈(a−δϵ..a+δϵ)R =⇒ f [x]∈(L−ϵ..L+ϵ)R
iff
x∈(a−δϵ..a+δϵ)R =⇒ x∈f∗[(L−ϵ..L+ϵ)R].

This shows that
〈 ∀ϵ∈R+ ∃δϵ∈R+ ∀x∈A〈 x∈(a−δϵ..a+δϵ)R =⇒ f [x]∈(L−ϵ..L+ϵ)R 〉 〉
iff
〈 ∀ϵ∈R+ ∃δϵ∈R+ ∀x∈A〈 x∈(a−δϵ..a+δϵ)R =⇒ x∈f∗[(L−ϵ..L+ϵ)R] 〉 〉.

This shows that 〈 f−→L@a 〉 iff 〈 ∀ϵ∈R+ ∃δϵ∈R+ ∀x∈A〈 x∈(a−δϵ..a+δϵ)R =⇒ x∈f∗[(L−ϵ..L+ϵ)R] 〉 〉.

proof of 2).
Let f : A⊆R−→R be function.
Let a∈A be a real number in the domain of f .
Let L∈R be a real number in the codomain of f .
TODO

proof of 3).
Let f : A⊆R−→R be function.
Let a∈A be a real number in the domain of f .
Let L∈R be a real number in the codomain of f .
TODO

proof of 4).
Let f : A⊆R−→R be function.
Let a∈A be a real number in the domain of f .
Let L∈R be a real number in the codomain of f .
TODO

proof of 5).
Let f : A⊆R−→R be function.
Let a∈A be a real number in the domain of f .
Let L∈R be a real number in the codomain of f .
TODO

proof of 6).
Let f : A⊆R−→R be function.
Let a∈A be a real number in the domain of f .
Let L∈R be a real number in the codomain of f .
TODO

(Section) The fundamental theorem of ϵ-equality

DEFINITION. Let a, b∈R be real numbers.
0) a is under b iff a<b.
1) a is over b iff a>b.
2) a is at most b iff a≤b.
3) a is at least b iff a≥b.
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LEMMA. Let a, b∈R be real numbers.
0) if for every positive ϵ∈R+ it’s true that |a−b|<ϵ, then |a−b|≤0.
1) if for every positive ϵ∈R+ it’s true that |a−b|<ϵ, then |a−b|/∈R+.
2) if for every positive ϵ∈R+ it’s true that |a−b| − ϵ∈R−, then |a−b|/∈R+.

THEOREM. The fundamental theorem of ϵ-equality, aka the fundamental theorem of analytic equality.
Let a, b∈R be real numbers.

0) a equals b iff for every positive ϵ∈R+ it’s true that |a−b|<ϵ.
In symbols,

for every a, b∈R〈
a=b iff for every ϵ∈R+〈
|a−b|<ϵ
〉

〉.
proof.
H0) Let a, b∈R be real numbers.
We show that a equals b iff for every positive ϵ∈R+ it’s true that |a−b|<ϵ.
C0) By the absolute value definition, |0|=0.

We show that if a equals b, then for every positive ϵ∈R+ it’s true that |a−b|<ϵ.
H1) Let a equal b.
H2) Let ϵ∈R+.
We show that |a−b|<ϵ.
Since, by H1), a=b, then, by the existence of additive inverses for reals, C1) a−b=0.
Since, by C1), a−b=0, then, by the fundamental meta-theorem of equations, C2) |a−b|=|0|.
Since, by C2), |a−b|=|0|, and, by C0) |0|=0, then, by replacement, C3) |a−b|=0.
Since, by the R axioms, 0 is under every positive real, and, by H2), ϵ is positive, then, by replacement, C4) 0 is under ϵ.
Since, by C3), |a−b|=0, and, by C4), 0<ϵ, then, by replacement, |a−b|<ϵ.

This shows that |a−b|<ϵ.
This shows that C5) if a equals b, then for every positive ϵ∈R+ it’s true that |a−b|<ϵ.

We show that if for every positive ϵ∈R+ it’s true that |a−b|<ϵ, then a equals b.
H3) Let ϵ∈R+.
H4) Let |a−b|<ϵ.
H5) Let a not equal b, for contradiction.
We must find a contradiction.
Since, by H5), a6=b, then, by the existence of additive inverses for reals, C6) a−b 6=0.
Since, by C6), a−b 6=0, then, by the fundamental meta-theorem of equations, C7) |a−b|6=|0|.
Since, by C7), |a−b|6=|0|, and, by C0), |0|=0, then, by replacement, C8) |a−b|6=0.
Since, by C8), |a−b|6=0, then, by the trichomotoy of reals, C9) |a−b|<0 or |a−b|>0.
Since, by C9), |a−b|<0 or |a−b|>0, and absolute values are always nonnegative, then by ∨-elimination, C10) |a−b|>0.
Since, by C10), |a−b|>0, then, by the positive reals definition R+, C11) |a−b|∈R+.
Since, by H3) and H4), for every ϵ∈R+ it’s true that |a−b|<ϵ, then, by the previous lemma, C12) |a−b|/∈R+.
Since, by C11), |a−b|∈R+, and, by C12), |a−b|/∈R+, then there’s a contradiction.

This shows that a equals b, by the law of non-contradiction.
This shows that C13) if for every positive ϵ∈R+ it’s true that |a−b|<ϵ, then a equals b.

Since, by C5), if a equals b, then for every positive ϵ∈R+ it’s true that |a−b|<ϵ,
and, by C13), if for every positive ϵ∈R+ it’s true that |a−b|<ϵ, then a equals b,
then, by the iff definition, a equals b iff for every positive ϵ∈R+ it’s true that |a−b|<ϵ.

This shows that a equals b iff for every positive ϵ∈R+ it’s true that |a−b|<ϵ.

THEOREM. The triangle inequality for R.
Let a, b∈R be real numbers.

0) |a+b| is at most |a|+|b|.
In symbols,

for every a, b∈R〈
|a+b| ≤ |a|+|b|

〉.
proof. TODO
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(Chapter) The three fundamental theorems of calculus

THEOREM. The first fundamental lemma of calculus, aka the mean value theorem for derivatives, aka the local-to-global
principle of differential calculus.

THEOREM. The second fundamental lemma of calculus, aka the mean value theorem for integrals, aka the local-to-global
principle of integral calculus.

THEOREM. The first fundamental theorem of calculus, aka the differential of the area function of a function is the differential of the
function.

THEOREM. The second fundamental theorem of calculus, (high-dimensional) integration on a (high-dimensional) interior is (low-
dimensional) integration on a (low-dimensional) boundary.

THEOREM. The third fundamental theorem of calculus, aka Taylor’s differential expansion, aka Taylor’s analytic approximation,
aka Taylor’s theorem.
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(Chapter) The Riemann integral

By the First Fundamental Theorem of Calculus, if a function is Riemann integrable and continuous, then it has an antiderivative.
Also, the antiderivative is continuous.

More specifically, by the First Fundamental Theorem of Calculus, if a function f is Riemann integrable and continuous, then it has an antiderivative
F , and the antiderative is precisely the (continuous) function F : x 7−→

∫
[a..x]

f .
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(Chapter) Topology

Topology is the study of continuous functions.
To talk about continuous functions, we must talk about open sets.
Open sets are not defined directly, but indirectly in terms of their set-theoretic behavior: how they behave under unions and intersections.
So, I can never tell you what an open set is, only how it behaves. It’s its behavior that defines it.

THEOREM. The fundamental duality of open topologies and closed topologies.

LEMMA. The fundamental lemma of continuity and compacteness.
Images of continuous functions on compact sets are compact.
If the domain of a continuous function is compact, then its image is compact.

LEMMA.
Let X be a totally-ordered topological space.

0) if X has no min, then the 2-set of ∞-balls {B⊆X | ∃a∈X〈 B=(a..+∞) 〉} is an open cover of X.
1) if X has no max, then the 2-set of ∞-balls {B⊆X | ∃a∈X〈 B=(−∞..a) 〉} is an open cover of X.
2) if X has min m, then the 2-set of ∞-balls {B⊆X | ∃a∈X〈 B=(a..+∞) 〉} is an open cover of X−{m}.
3) if X has max M , then the 2-set of ∞-balls {B⊆X | ∃a∈X〈 B=(−∞..a) 〉} is an open cover of X−{M}.

proof of 1).
Let X be a totally-ordered topological space.
Let X have no max.
Let B be the 2-set of ∞-balls {B⊆X | ∃a∈X〈 B=(−∞..a) 〉}.
We show that B is an open cover of X.
Since We show that B is an open cover of X, then, by the open cover definition, We show that X is a subset of ∪B.

We show that x is an element of ∪B.
Let x not be an element of ∪B, for contradiction.
Since x is not in ∪B, then, by negating the union definition, there doesn’t exist B∈B so that x∈B.
Since ¬∃B∈B〈 x∈B 〉, then, by the rules of classical logic, ∀B∈B〈 x/∈B 〉.

Since X has no max, then, by negating the max definition, there doesn’t exist M∈X so that for all y∈X it’s true that y≤M .
Since ¬∃M∈X ∀y∈X〈 y≤M 〉, then, by the rules of classical logic, ∀M∈X ∃y∈X〈 y>M 〉.
Since ∀M∈X ∃y∈X〈 y>M 〉, and x∈X, then, by plugging M :=x, there exists x′∈X so that x′>x.
Since x<x′, and x∈X, and x′∈X, then, by the ball definition, x is in the ball (−∞..x′).
Since x′∈X, then, by the B definition, the ball (−∞..x′) is in B.
Since (−∞..x′)∈B, and x∈(−∞..x′), then there exists B∈B so that x∈B.

Since ∀B∈B〈 x/∈B 〉, and ∃B∈B〈 x∈B 〉, then there’s a contradiction.
This shows that x is an element of ∪B, by the law of non-contradiction.

This shows that X is a subset of ∪B.
This shows that ∪B is an open cover of X.

THEOREM. The extreme value theorem for topological spaces.
Let X be a compact topological space.
Let Y be a totally-ordered topological space.
Let f : X−→Y be continuous.

0) There exist a, b∈X so that for every x∈X it’s true that f [x]∈[f [a]..f [b]].
The point f [a]∈X is called the min of f .
The point f [b]∈X is called the max of f .
The point a∈X is called the argmin of f .
The point b∈X is called the argmax of f .
proof.
Let X be a compact topological space.
Let Y be a totally-ordered topological space.
Let f : X−→Y be continuous.
We show that there exist a, b∈X so that for every x∈X it’s true that f [x]∈[f [a]..f [b]].

Since X is compact and f is continuous, then, by the fundamental lemma of continuity and compactness, the image f∗[X] is compact.

Let m be the min of f∗[X]. (Why does this exist? This is what we want to proof!)
Let M be the max of f∗[X]. (Why does this exist? This is what we want to proof!)
Since m is the min of f∗[X], then, by the min definition, m is in f∗[X].
Since M is the max of f∗[X], then, by the max definition, M is in f∗[X].
Since m∈f∗[X], then, by the f∗[X] definition, there exists a∈X so that f : a7−→m.
Since M∈f∗[X], then, by the f∗[X] definition, there exists a∈X so that f : b 7−→M .

Let f∗[X] have no max, for contradiction.
Let B be the 2-set of ∞-balls {B⊆f∗[X] | ∃y∈f∗[X]〈 B=(−∞..y) 〉}.
Since the domain of X, and the codomain of f is Y , then by the image definition, the image f∗[X] is a subset of Y .
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Since f∗[X] is a subset of Y , and Y is totally-ordered, then, by XX, f∗[X] is totally ordered.
Since f∗[X] has no max, and f∗[X] is totally-ordered, then, by lemma XX, the 2-set B is an open cover of f∗[X].
Since the 2-set B is an open cover of f∗[X], and f∗[X] is compact,
then, by the compactness definition, it has a finite subcover {(−∞..y0), (−∞..y1), . . . , (−∞..yn)}.
Since the cover {(−∞..y0), (−∞..y1), . . . , (−∞..yn)} is finite, then the set {y0, y1, . . . , yn} of boundary points is finite.
Since the set {y0, y1, . . . , yn} is finite, then, by XX, it has a maximum M .
Since M is the max of {y0, y1, . . . , yn}, then, by the max definition, M is an element of {y0, y1, . . . , yn}.
Since M is an element of {y0, y1, . . . , yn}, and {y0, y1, . . . , yn} is a subset of f∗[X],
then by the properties of subsets, M is an element of f∗[X].
Since M is an element of f∗[X], and {(−∞..y0), (−∞..y1), . . . , (−∞..yn)} covers f∗[X],
then, by the cover definition, M is an element of the union ∪{(−∞..y0), (−∞..y1), . . . , (−∞..yn)}.
Since M is an element of the union ∪{(−∞..y0), (−∞..y1), . . . , (−∞..yn)},
then, by the union definition, there exists (−∞..yi)∈{(−∞..y0), (−∞..y1), . . . , (−∞..yn)} so that M∈(−∞..yi).
Since M is an element of (−∞..yi), and (−∞..yi) in an element of {(−∞..y0), (−∞..y1), . . . , (−∞..yn)},
then M∈(−∞..y0) or M∈(−∞..y1) or . . . M∈(−∞..yn).

Since M is an element of {y0, y1, . . . , yn},
and every element of {y0, y1, . . . , yn} is a boundary point of an element of {(−∞..y0), (−∞..y1), . . . , (−∞..yn)},
then M is a boundary point of an element of {(−∞..y0), (−∞..y1), . . . , (−∞..yn)}.
Since M is a boundary point of an element of {(−∞..y0), (−∞..y1), . . . , (−∞..yn)},
and every element of {(−∞..y0), (−∞..y1), . . . , (−∞..yn)} is an open ball,
and open balls don’t contain boundary points,
then M/∈(−∞..y0) or M/∈(−∞..y1) or . . . M /∈(−∞..yn).

Since M/∈(−∞..y0) or M/∈(−∞..y1) or . . . M /∈(−∞..yn),
and M∈(−∞..y0) or M∈(−∞..y1) or . . . M∈(−∞..yn),
then there’s a contradiction.

(subsection) [...]

[...]
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(Chapter) Category theory

A category is dots, arrows (between dots), and gluing conditions (between arrows).
The dots and arrows can be explicitly visualized (they’re concrete things).
The gluing conditions can’t be explicitly visualized (they’re abstract meta-things, or something).

example. The two-equals-one axiom.
I used to think that the arrows

f : X −→ Y
g : Y −→ Z
h : X −→ Z
1X : X −→ X
1Y : Y −→ Y
1Z : Z −→ Z

formed a category. But they don’t. Dots and arrows alone don’t make a category. We need gluing conditions, too.

Trick question: how many arrows does this category have?
I used to think it had 6: f, g, h, 1X , 1Y , 1Z . But it doesn’t.
It has 7 arrows: since the target of f equals the source of g, then, by the category axioms, there exists a arrow gf .
So our collection of arrows grows by 1: f, g, h, 1X , 1Y , 1Z , gf .
Or does it?
Notice that the target of 1X equals the source of f , so we also get the arrow f1X .
For analogous reasons, we also get the arrows 1Y f, g1Y , 1Zg, h1X , 1Zh.
So our collection of arrows grows to: f, g, h, 1X , 1Y , 1Z , gf, f1X , 1Y f, g1Y , 1Zg, h1X , 1Zh.
Or does it?
The collection of arrows f, g, h, 1X , 1Y , 1Z , gf, f1X , 1Y f, g1Y , 1Zg, h1X , 1Zh on its own doesn’t form a category: it’s missing gluing conditions.
And we can’t just go about choosing any old gluing conditions that we please; nope. Our gluing conditions must satisfy the category
axioms. The following set of gluing conditions does the trick:

gf = h
f1X = f
1Y f = f
g1Y = g
1Zg = g
h1X = h
1Zh = h

Aha! So under these gluing conditions, the arrow gf “equals” the arrow h (whatever “equals” means), and similarly for other arrows.
This means that our collection of 6+7 arrows

f, g, h, 1X , 1Y , 1Z , gf, f1X , 1Y f, g1Y , 1Zg, h1X , 1Zh
“collapses down” to the original 6 arrows

f, g, h, 1X , 1Y , 1Z .

Objects and morphisms can be visualized as dots and arrows.
But how do we visualize the fact that (for instance) gf=h?
I don’t know, and I suspect we can’t (it’s a meta-thing...), because gf is the composition of f with g (so gf is a path of length 2), but h is a
single arrow (it’s a path of length 1)!
How can the two arrows f and g equal the one arrow h? I don’t know. It’s just an axiom for this category. And I don’t know how to visualize
it. But I think of it as the axiom 2=1: two arrows equal one arrow.

So, for this collection of arrows, under these gluing conditions, the arrows f, g, h satisfy the 2=1 axiom. (And other arrows do as well.)

When thinking about categories:
we try to “forget” about the internal structure of objects, and think of objects as structureless point-particles,
we try to “forget” about the objects altogether, and think only in terms of the arrows.

Categories are posets in the next dimension.
∞-groupoids are sets in the next dimension.

DEFINITION. Categories. The category axioms.
A category C satisfies the following sentences.

0) Existence of arrows:
there exists a class Hom[C] of C-arrows.

1) Existence of source-arrows and target-arrows:
for every C-arrow f∈Hom[C]〈
| there exists a C-arrow Sf∈Hom[C] (aka the source-arrow of f) so that 〈 SSf=Sf and TSf=Sf 〉 and
| there exists a C-arrow Tf∈Hom[C] (aka the target-arrow of f) so that 〈 STf=Tf and TTf=Tf 〉
〉.

2) Existence of identity-arrows:
for every C-arrow f∈Hom[C]
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| there exists a C-arrow 1Sf∈Hom[C] (aka the identity-arrow of Sf) so that 〈 S1Sf=Sf and T1Sf=Sf 〉 and
| there exists a C-arrow 1Tf∈Hom[C] (aka the identity-arrow of Tf) so that 〈 S1Tf=Tf and T1Tf=Tf 〉
〉.

3) Existence of composite-arrows:
for every C-arrow f∈Hom[C] and
for every C-arrow g∈Hom[C]〈
| if Tf=Sg,
| then there exists a C-arrow gf∈Hom[C] (aka the composite-arrow of f with g) so that 〈
| | Sgf=Sf and
| | Tgf=Tg
| 〉
〉.

PROPOSITION. Identity-arrows and source-arrows are the same. Identity-arrows and target-arrows are the same.
Let C be a category.
Let f∈Hom[C] be a C-arrow.

0) 1Sf=Sf .
1) 1Tf=Tf .
0′) The identity-arrow of the source-arrow of f is the source-arrow of f .
1′) The identity-arrow of the target-arrow of f is the target-arrow of f .
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(Chapter) Sheaves

Sheaves keep track of local-to-global relationships between data in a way that ensures local-to-global consistency.

The idea is that we have a bunch of open sets of X stuffed into a topology τX⊆PX.
And we take an open set U⊆X.
And we take an open cover of U , say, the open cover {U0, U1}⊆τX made of two cover elements. Since {U0, U1} covers U , then U0∪U1=U .
On each cover element Ui∈{U0, U1} there is a continuous map fi : Ui−→R.
Since there are two cover elements (U0 and U1), and on each cover element there’s a continuous map, then we have two continuous maps:

0) a continuous map f0 : U0−→R on U0, and
1) a continuous map f1 : U1−→R on U1.

And we want to look at all possible intersections of all cover elements.
So, we take all four interections of U0 and U1:

0) U0∩U0, which is just U0,
1) U0∩U1,
2) U1∩U0, which is the same as U0∩U1,
3) U1∩U1, which is just U1.

This yields two extra continuous maps:
0) the restriction of f0 : U0−→R to U0∩U1, which is denoted f0|U0∩U1 : U0∩U1−→R, and
1) the restriction of f1 : U1−→R to U0∩U1, which is denoted f1|U0∩U1

: U0∩U1−→R.
So, we started with two maps, f0 and f1, but now we have four:

0) f0 : U0−→R,
1) f1 : U1−→R,
2) f0|U0∩U1 : U0∩U1−→R, and
3) f1|U0∩U1

: U0∩U1−→R.
In general, the map f0 : U0−→R is different from the map f1 : U1−→R.
And, in general, the restriction map f0|U0∩U1

: U0∩U1−→R is different from the restriction map f1|U0∩U1
: U0∩U1−→R.

Now comes the good stuff.
We want to “glue” f0 and f1, which are defined on U0⊆U and U1⊆U , into a single global map f defined on all of U0∪U1 (which is U).
But there isn’t a single global map defined on all of U0∪U1: there are two global maps! Call them f : U0∪U1−→R and g : U0∪U1−→R.
The global map f : U0∪U1−→R is defined piecewise, as follows.

0) For every x, if x is in U0−U1, then f maps x to f0[x].
1) For every x, if x is in U1−U0, then f maps x to f1[x].
2) For every x, if x is in U0∩U1, then f maps x to f0|U0∩U1

[x].
The global map g : U0∪U1−→R is defined piecewise, as follows.

0) For every x, if x is in U0−U1, then g maps x to f0[x].
1) For every x, if x is in U1−U0, then g maps x to f1[x].
2) For every x, if x is in U0∩U1, then g maps x to f1|U0∩U1 [x].

By definition, the global maps f and g agree on U0−U1 and on U1−U0, but they disagree on the intersection U0∩U1, because f0|U0∩U1
[x] need

not equal f1|U0∩U1 [x] for x∈U0∩U1. (Recall that, in general, the restriction map f0|U0∩U1 is different from the restriction map f1|U0∩U1 .)
But we can demand that f and g agree U0∩U1 too, and, in that case, f and g become the same map, ie. f=g.
So, if we want f=g, then we keep the piecewise definitions of f and g, and we add an extra condition:

For every x, if x is in U0∩U1, then f0|U0∩U1
[x]=f1|U0∩U1

[x].
This condition ensures that f : U0∪U1−→R and g : U0∪U1−→R are the same map, ie. f=g. This forces the uniqueness of a global map f .

And now we have a single patchwork map f : U0∪U1−→R defined on all of U0∪U1, constructed by “gluing” f0 : U0−→R and f1 : U1−→R
and ensuring compatibility on the intersection U0∩U1.
Since f0 : U0−→R and f1 : U1−→R are continuous, then the patchwork map f : U0∪U1−→R is also continuous, but this requires proof.

DEFINITION. Presheaves (of abelian groups) on topological spaces.
Let (X, τX) be a topological space.
Let Ab be the category of abelian groups.
A presheaf F (of abelian groups) on the topological space (X, τX) is

a contravariant functor F from τX to Ab, or equivalently
a covariant functor F from τopX to Ab.

In detail.
0) For every τX arrow f

there exists an Ab arrow Ff so that SFf=FSf and
there exists an Ab arrow Ff so that TFf=FTf and
there exists an Ab arrow F1Sf so that F1Sf=1FSf and
there exists an Ab arrow F1Tf so that F1Tf=1FTf .

0) Existence of arrows:
for every τX arrow f : U−→V
there exists an Ab arrow Ff : FU←−FV .

1) Composition compatibility:
for every τX arrow f : U−→V and
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for every τX arrow g : V−→W
there exists an Ab arrow Fgf : FU←−FW

so that Fgf=FfFg.
2) Object/identity compatibility:

for every τX identity arrow 1U : U−→U
there exists an Ab identity arrow F1U : FU←−FU

so that F1U=1FU .
example.
Let τX be a category.
Let Ab be a category.
Let f : U−→V be a τX arrow.
Let g : V−→W be a τX arrow.
Let F be an Ab-presheaf on τX .
|
| Since τX is a category,
| and f : U−→V is a τX arrow from U to V ,
| and g : V−→W is a τX arrow from V to W ,
| and Tar[f ]=Src[g],
| then, by the category axioms, there exists a τX arrow gf : U−→W from U to W .
|
| Since f : U−→V is a τX arrow from U to V ,
| and g : V−→W is a τX arrow from V to W ,
| and gf : U−→W is a τX arrow from U to W ,
| and F is an Ab-presheaf on τX ,
| then, by presheaf arrow compatibility, there exists an Ab arrow Ff : FU←−FV to FU from FV ,
| and, by presheaf arrow compatibility, there exists an Ab arrow Fg : FV←−FW to FV from FW ,
| and, by presheaf arrow compatibility, there exists an Ab arrow Fgf : FU←−FW to FU from FW .
|
| Since Ab is a category,
| and Ff : FU←−FV is an Ab arrow to FU from FV ,
| and Fg : FV←−FW is an Ab arrow to FV from FW ,
| and Tar[Fg]=Src[Ff ],
| then, by the category axioms, there exists an Ab arrow FfFg : FU←−FW to FU from FW .
|
| By presheaf composition compatibility, Fgf=FfFg.
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